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Abstract

In most work on the dynamical equilibrium of the Van Allen
Belts it is assumed that the plasma is tenuous, i.e. one neglects
second order effects such as the magnetic field generated by the
particles in the belt compared to the geomagnetic field. It would
seem from the results of these calculations that this is not a
good approximation and that the plastha energy/vol. is comparable

to the geomagnetic energy/vol. In the present work the radiation

" belts are treated self consistently. In particular the question

of how much plasma could be trapped in the belts if an unlimited
source were present is considered. Judging from a preliminary

calculation it would seem that the Van Allen Belts are saturated.
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INTRODUCTION

As a first approximation we may consider the Van Allen belts to
be a steady state plasma confined in a bounded volume by the earth
magnetic dipole field, The temperature, density and magnetic field
strength are such that the plasma may be described adequately by the
Vlasov equation. If we further observe that the Larmor radius of
the particles is much smaller than the distances within which the
magnetic field, particle density etc., change by a significant fraction
of themselves we may then use the guiding center approximation. If we
assume that the plasmas is neutral, and thus there are no electric
fields we have in the steady state the following equation for dynamical

equilibrium - | é
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where 3 is the current due to the motion of plasma constituents, E the
magnetic field generated by the plasma, Eo the external magnetic dipole
, ,

field, and P . The pressure tensor of the plasma. The pressure tensor

is defined by
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where the sum is taken over the plasma constituents (electrons and ions)
and £ is the distribution function for a given cénstituent. It is assumed
in this approximation that P is a diagonal tensor in a local coordinate
system with the z~-axis parallel to the magnetic field. It is further
assumed that Pxx = Pyy - gL . For convenience we! define Ezz -S&}i'

o
\“



Lo m e

The current J and the field B are related by Maxwell's equations

o——y

(3) v‘—\‘;z/u,T

also
) V8B =0

Clearly these equations alone are not sufficient. The équations
cannot tell us how many particles are in the Van Allen belts or even how
they are distributed. They specify only certain dynamical and electro~
magnetic consistency requirements. .

In a comprehensive discussion of the subject, Apel, Singer and
Wentworth* have studied in detail certain zero order solutions to the
above equations. '(One can demonstrate that first order particle orbit
theory is equivalent to the above system of equations.f) By zero order
calculation we mean that B is neglected in comparison to Eo in eq. (1).
However to obtain a solution representing the qbserved particle densities
it would appear that this assumption may not be a good one.

The zero order calculation indicates that the plasma field may
well be comparable to the geomagnetic field. For this reason we address
ourselves to the question: how much plasma, with given energy distribution,
can be contained within a given bounded volume by a magnetic dipole field?

For example, we might ask: how much plasma can be contained between two

J R. Apel, S. F. Singer, and R. C. Wentworth, "Effects of Trapped
Particles on the Geomagnetic Field", pp. 131-89 in "Advances in Geo-
Physics, 9, 1962, Academic Press

+Conrad L.Lergmire,, Elementary Plasma Physics, John Wiley & Sons,
New York, 1963, Ch. III.
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spheres of radius r; and r;, by a dipole field?

In order to obtain the relation between the number of particles
trapped in the dipole fiela and the pressure distribution we need an
equation of state. To this end we take the trace of the pressure tensor

defined in eq. (2).
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where E+ is the mean energy per ion (électrop) and N+ the number density -‘%

of the ions (electrons). E is the average energy per particle and is
defined by ‘ ‘ @
. N, B, +N_E._

N+ VL

We have also‘set N = N+ + N_.

In the Van Allen belts N+ = N_ and E+ >> E_. We will therefore

write
L
’ -WFKP -1? = R "* E;+

and in the future we will omit the + subscript as there will be no
further ﬁention of the electrons.

We shall assume also that E is a constant throughout the belt and
is given (experimentally) so that eq. (5) gives the number density as a _;;

function of pressure. (N and P remain functions of position.)

Our problem then may be stated as follows. Find a solution of ';
eqs. (1), (3) and (4) with P = 0 outside the shell r] < r < r, such
that JTr*F*dag is a maximum. Our objective is to compare this maximum ‘ s

- particle number with the observed particle number to see if the Van
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Allen belts are in fact saturated. There are other alternatives of
course. The particle density could be limited by virture of the fac;
that the particle source is limited so thaf_when equilibrium is reacﬁed
between the source and sink (capture in the atmosphere, etc.) the density
is below the maximum discussed above. Or it is quite possible that
instabilities arrive before the maximum is attained. In any case it is
worthwhile to examine the problem to see what this maximum is.

We hasten to point out that we were not successful in solving the
general problem outlined above. We have limited ourselves to showing
that an upper bound exists and deriving bounds in terms of certain
plasma parameters (eg. magnetic moment, field generated by the plasma
at the earth's su;face, etc.). We maximize the density for a two
dimensional model by choosing spherical solutions with variable para-

meters.

Self Confinement

Let us first consider whether the problem as posed has a solution,
that is there may be no upper bound on the amount of plasma that could
be confined by a dipole in the shell r] <r < rp. Let us suppose there
is no upper bound. If we imagine more and more plasma being packed into
the shell there comes a time when the magnetic field of the dipole be-
comes negligible compared to the magnetic field génerated by the plasma.
We might as well neglect the dipole field, in which case, the question
becomes whether the plasma can confine itself. There is a well known

*
theorem due to Schmidt that a plasma satisfying the Vlasov equation

. ‘
G. Schmidt, '"Virial Theorem for Plasmas', the Physics of Fluids,
1960. ppo 481-2.



cannot contain itself. If eq. (1) (omitting Bo) is dotted with © and
both side integratei-::er all.space we find
XT»? & +'il/§'%“1c\3\' = O
. .
(This is a special case of the Virial theorem derived by Schmidt). We
have used eqs. (3) and (4). From eq. (5) we see that Tr P is positive
definite and thus the sum could not be zero.
Although this argument is not strictly rigorous (it may not be

legitimate to neglect Bo compared ‘to B even though it is much gmaller
over most of the plasma) it nevertheless indicates that a dipole can

contain only a finite quantity of plasma in a shell.

e

J

Some General Theorems

We will first derive some general theorems relating an upper bound
on the quantity of plasma with other plasma parameters.

We consider first a generalization of a result derived by Dessler
and Parker* for some special/geometries and later by Sckopke+ for an
arbitrary geoﬁetry. In both cases the results-were derived from particle
orbit theory and are zero order calculations (i.e. B << Bo). In what
follows we will not require B << Bo.

We dot both sides of eq. (1) and integrate over all space

©® (. (9 F) & e (FIxFS LITTE

*
Dessler, A. J., and Parker, E. N., "Hydromagnetic Theory of Geomagnetic
Storms', Journ. of Geophys. Res., 64, 1959, pp. 2239-52.

*N. Sckopke, "A General Relation Between the Energy of Trapped Particles
and the Disturbance Field Near the Earth'. Journ. of Geophys. Res., 71,
1966, pp. 3125-30.
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We will simplify each term in eq. (6) in turn. First we note that

v (v F)= V(P ¥) - T

Integrating both sides, converting the integral of the dlvergence into

a surface integral at infinity (where the pressure vanishes) we have
Gy

— b 3 .
(v 9P dr 2o {7V A
From the definition of P (eq. 5) we have
I N e i S N

where N. (ET) is the total number (energy) of particles in the belt and
E the average energy per particle. E 1s calculated by averaging over
all the particles in the belt whereas E (in eq. 5) is calculated by
averaging over a small volume element. We have not assumed in eq. (7)
that N+ = N_ or that E is a constant over the belt.

Similarly one may show, using eqs. (3) and (4) that

S:%:ﬁ é\?\"az/u‘sg Al

The last term in eq. (6) may be simplified by noting that the dipole

field (Bo) may be represented as follows

— A
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-
where m (m = m2) is the magnetic moment and £(Z) a unit vector in the radial

(vertical) direction. Since ; . 3 x £ = 0 the only term that survives is

the second and we have
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But /Wo -;:” ? 3
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is the magnetic field due to the plasma currents evaluated at the origin

(g(O)). We have finally from eq. (6).
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Since B2 is positive definite we have

(10> N-\- < Y, .‘1} { 0)
: U E

Another interesting consequence of eq. (9) is that o e g(O) > 0,
that is the plasma field will support the earth's dipole field at the
poles and oppose it in the equitorial regions.

We may obtain another upper bound on N by considering the inequality

T
AEN, « { F AR, vz § B (FaF) &
If we assume azimutal component and so

LTENy « § B, v T A

is the 6 component of the dipole/field. Since B is positive

where Bo 0,8

,8
definite

LE Ne < (\-T)\u, S Q".G v

where (rJ)max is the maximum of the product, and the integral ofABO 5 is
b4

taken over the plasma volume (Vp) only. Noting that B, > B

0

over the plasma volume we have

0,6

BO for the average of BO

0 NT < (“9)\“.‘ "'ﬁ“ / E

where <mp)max is given by

(yﬂ\g) o= '§: (Y'-3i>'~““‘\/P
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and writing




This is in a manner of speaking the converse of eq. (10) where we have a
product of the dipole magnetic moment and the plasma field whereas in
eq. (11) we have a product of the plasma magnetic moment with the dipole
magnetié field. It is clear that eq. (11) ié neither as useful nor as

accurate an upper pound on the total number of particles.

0 e e i .
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A Simplified Model

In the preceding section we derived some theorems for the upper
bound on the number of particles in the Van Allen belts. These upper
bounds were given in terms of observables associated with the belt, e.g.,
B(0) . However we have not obtained an upper bound or B(o). If we can
measure B(o) (and E) we know that there are less than m - ;(o)/ZE
particles in the belt. This does not tell us how many particles could
be put in the belt. To answer this question we have had to consider a
gimplified model. Let us assume that all particles move in the equatorial
plane. All the forces acting on the particle in this idealization will
be in the plane and thus a self-consistent (though unstable) solution
exists. This reduces the complexity of the problem considerably and although
we were still unable to give & completely satisfactory answer for the
uppe:ibqpnﬂkon the particle number, we were nevertheless successful in
obt*ipiﬁjth lower limit for the upper bound, i.e., we will show that the
nnxi;u- must be greater than a given number.

If we assume cylindrical symmetry about the dipole axis, the

equation for equilibrium (eq. 1) becomes

(12) c\‘?“(\'\ « 3 (9 ‘_‘—‘\“3 + 30“).1
Av

P = o) is the indicated component of the pressure .

where P (P__ =P
Ir T L4 4 zz

tensor, J(r) is the component of the plasma current, Bz is the z-component
of the magnetic field generated by the plasma and Bo(r)
is the earth's magnetic field in the equatorial plane. The currents J

and the field B are related by Maxwell's equations

(13)
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We may obtain the number density from eq. (5) .

(14) P = NE

OQur problem of maximizing the amount of plasma that may be confined
in a bounded domain (r;< rq<ry by a dipole field may be formulated as
follows. Find a Pn_(r) satisfying eq. (12) (with J(r) and Bz(r) solutioms

of eqs. (13)) which maximizes the integral
v\-
e
(15) S vy V. A¥
, v

subject to the constraints Prr = o for rgry and ryp ry and Prr(r) 20

;

for rig r§rp. This maximum number is then

‘-\
v,) = 2T e e R dr
Max, & v

We have not determined the genmeral solution to this problem. We have
obtained limited success by picking a pressure Prr(r) with variable
parameters satisfying the constraints and the equation of equilibrium and
adjusting the parameters to maximize the integral in éq. (15). This will
give (N ) ox.- for a restricted class of pressure profiles. Before pro-
ceeding with this plan we would like to reformulate the problem to

facilitate the calculation. First we may solve egs. (13) to give Bz(r)

Ce

(16) (3*(,.) = g T () RR(V.,\-’) Av’

whererBR (r,r") is the magnetic field at a distance r from the center of
a unit current in a ring of radius r'. The observation point lies in the
plane of the ring. Eq. (16) is just the statement that the field due to

a planar current distribution J(r') is that of a sum of ring currents
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*
J(xr')dr*. The function BR (r,r') is given by Smythe

BRQ\’,\") = Ao \_\H’, S—\& (1@) , i_r_ct_\.:,' E( 1":::-'

2T v

where K and E are complete elliptic integrals of the first and second
kind, There are several directions in which one might proceed. We
chose to eliminate Bz(r) between eqs. (12) and (16) to obtain the integral

equation

(17) T iv) §'§'Lv‘) BRU-,W) A & Q.Lv)

If the pressure profile were given the solution of this nonlinear
integral eéuation would determine J(r). Needless to say such an equation
cannot be sblved. It is however a simple matter to solve eq. (17) for
P(r) if the current is given (provided of course that the integral can be
performed). As an example that allows an analytic solution (for most
current distributions the integral must be performed numerically) we

consider a current given by

J(wy: T, (Qy- ) (r-a,) S &S A

T(*) =0 : elsewhere

where Q‘ < Qt . We definega = a, =-ay, and assume ga much less than a

We must choose a current distribution that is continuous or the function

1’

S J(x") BR(r, T )c\r is singular. Such a current will give a pressure

which is constant inside a ring of radius r = ai

(We have also considered the case of a hollow core, as we find

and zero outside the ring

r-az.

* W. Smythe, '"Static and Dynamic Electricity", pp. 270~1, McGraw-Hill

Book Co., 1950
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in the actual Van Allen belts, but the numbers are very much the same.)

Integrating eq. (17) we have

} (3 1 . !
‘?(\.\ ~ M M '5"9 (ACL) _ (QC\) A '3: ( 2q 1 :
Y 7q° 199 7T a, /PM rral ‘f) Ocreq, !

(18)
T = o r>a,

To obtain this result we have used an asymptotic expansion for BR (r,r")
valid when r 2 r'. Eq. (18) requires then that 4 a be small.

Maximizing the pressure with respect to the parameter J,

i
Ay, MY 7 a [l £ + )

(19) ’R\

ax,

Unfortunately the pressure in eq. (18) increases indefinitely as
& function oan.. However, the pressufe maximized with respect to
Jo (eq. 19) is not a sensitive function of ga. We therefore choose ga
in eq. (19) as large as possible consistent with the approximation made
in eq. (18). We have chosenAa = ,la. We have then, from the equation

of state (eq. (14)), the maximum number density (number per unit area).

Mw = /oMV// ra £ (laior )

| . _ |
N, = 7o Hoay oz A n'real & [Lab0 2
Tota .

I1f we set a = 2,8 x 107 m. (approximately the distance to the outside of

ay

and

the Van Allen belts) and E = 85 Mey (the mean 'energy of the protons in

the belt) we find for Ntotal
2?

. ‘rfl’ile.f
(20) Moveiy = .27 52 P
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We may compare this result with experiment in the following way. In the
outer belt there are approximately 3 x 104 particles/m3. If the particles
were distributed uniformly inside a sphere of radius 2.8 x 10’m  there

would be 2.7 x 1027

particles. Thus we sce that the maximum number of
particles in this model is less than the observed number. Certainly the
model is not a particularly good one but it at least suggests to us that
the Van Allen belts are saturated.

In the above calculation & very restricted current density profile
was chosen. To be certain that we have a good estimate for the upper
bound (in the planar model) we liberalized the possible distributions
by considering a currenmt with five parameters

§
ey = T Cu (v--cg)w AasY¥Ys \)
(21) - - hey
-3- (\-) - [s) e,\sew\u-g
We have chosen a fuﬁction which automatically gives J = o at the inner

edge of the belt (r = &). We impose a comstraint on the Cn's so that J

is also zero at the outer edge (say r = b). Thus

5 "
> ¢ (b-a) = o

wai

Through a somewhat laborious numberical calculation, taking care near the

 singularily of BR(r,r‘) and restricting ourselves to positive pressure it

is possible to maximize N for current distributions of the form

total

given in eq. (21). We find for N__ .,

(22) X /b’.? P“p'}(.‘ lcf
/VTo-hl = /.0
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Of course this result is larger than that given by eq. (20) since we

have chosen a current distribution of greater flexibility.
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